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BUCKLING O F  A PRESSURIZED TOROIDAL RING 

UNDER UNIFORM EXTERNAL LOADING 

By George E. Weeks 
Langley Research Center 

SUMMARY 

A theoretical investigation of the buckling of a pressurized toroidal ring under a 
uniformly distributed line load is carried out, with finite shear stiffness, extensional 
stiffness, and appropriate contributions from the internal pressure taken into account. 
The equations governing both in-plane and out-of -plane buckling behavior of the ring, 
with direction of loading included, are derived and solved. The solutions to the buckling 
equations are presented in te rms  of five general parameters which a r e  functions of the 
internal pressure,  external load, and ring geometry. 

The major results of the investigation are: (a) The magnitude of the buckling load 
is very sensitive to the direction of loading during the buckling deformation and to  the 
ratio of cross-sectional radius to  the radius of the ring; (b) the shear stiffness of the 
ring wall material and internal pressure both contribute to  the effective transverse shear 
stiffness of the ring, which strongly influences the buckling loads. 

INTRODUCTION 

Expandable structures capable of being packaged into a small volume and erected 
into load-carrying structures by inflation have been used for a number of space missions. 
One such structure is an inflatable toroidal ring which has potential use as a stiffening 
element of deployable aerospace structures; for example, it may be efficient as a stiff­
ening ring of a deployable planetary entry decelerator. 

To use this ring in a practical structure, its buckling strength under compressive 
loads must be determined. Investigations of the stability of rings under uniform loads 
may be found in references 1, 2,  and 3. These studies, however, do not account for finite 
transverse shear stiffness including effects of internal pressure,  which can be expected 
to  be important for inflatable rings. 

The purpose of the present paper is to  determine the buckling load of a pressurized 
toroidal ring subjected to  a uniformly distributed radial load, taking transverse shear 
deformation into account. Since the investigations of references 1to 3 have shown that 
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the direction of load during deformation can have a significant effect on the magnitude of 
the resulting buckling load, three directions of load during the buckling process a r e  con­
sidered: (a) The load remains in the same direction, (b) the load remains directed toward 
the initial center of curvature, (c) the load remains normal to the deformed surface at 
every point. Both in-plane and out-of-plane ring behavior a r e  included. 

SYMBOLS 

A = 2nrt 

A = nr2 

A* cross-sectional a r ea  of toroidal membrane perpendicular to the centroidal 
axis after deformation (see fig. 3) 

e a  local circumferential extensional s t ra in  in membrane 


e a 9  local shear strain in membrane 


E Young's modulus 


G shear modulus 


I area  moment of inertia of membrane 


J area  polar moment of inertia of membrane 


K, E determinants defined by equations (44a) and (50a), respectively 


M1 twisting moment about the centroidal axis (see fig. 1) 


n integer 


local shear-s t ress  resultant 

P internal pressure 

P internal-pre ssu re stiffness parameter , P K R ~/ EI 
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external uniform line load 


external load parameter, qR3/ E1 


determinants defined by equations (44c), (44d), (44e), ( ~ O C ) ,  and (50d) 


radius of c ross  section of toroidal membrane 


radius f rom origin to centroidal axis of toroidal membrane 


radius parameter defined by equation (11) 


radius parameter defined by equation (36) 


length of centroidal axis after deformation 


length of outer surface of deformed ring in contact with line load 


shear-stiffness parameter, AGR2/ 2EI 


membrane wall  thickness 


extensional-stiffness parameter, EAR^ /EI 


u1, u2, u3 tangential, radial, and out-of-plane rigid-bocy translations of cross  section 
of ring 

u,  v, w tangential and normal displacements of a point in the surface of the membrane 
(see fig. 1) 

V2, V3 shear forces in the y and z directions, respectively (see fig. 1) 

W work of external load 

x, Y ,  z rectangular Cartesian coordinates (see fig. 1) 

z, z determinants defined by equations (44b) and (50b), respectively 

a circumferential angular coordinate of centroidal axis 
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angle defined by equation (14) (see fig. 2) 

angle defined by equation (37)(see fig. 7) 

shear s t ra in  of cross  section in y and z directions, respectively 

twisting-stiffness parameter, JG/EI 

radial distance of point on deformed outer surface from corresponding point 
on undeformed outer surface, under the line load 

change in enclosed volume of membrane due to deformation 

net a r ea  enclosed by deformed and undeformed membrane at its outer surface 

angular coordinate of ring cross  section 

change in s t ra in  energy of deformed membrane 

change in potential energy of internal pressure 

additional energy of the shell due to buckling 

* 1 9  9,*3 rotation of ring cross  section in yz, xz, and xy planes, respectively 

Subscripts: 

a 

b 

cr 

constant-direction loading 


radial loading 


hydrostatic loading 


critical 


ANALYSIS 

A segment of a pressurized toroidal ring configuration and the coordinate systems 
are shown in figure 1. The radius of the ring is R and the radius of the cross  section 
is r. The angular coordinates a! and e a r e  in the plane of the ring and in the plane 
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of the ring cross  section, respectively. They thus define the position of a point on the 
surface of the ring. Displacements u ,  v, and w of points on the surface of the ring 
are related to rigid-body translations of and rotations about the centroidal axis of the ring. 

Y W 

"3 

Translations u i  of the centroidal 
axis are referred to a local Carte­
sian coordinate system with its ori­
gin along the centroidal axis: ul 
is tangential to the centroidal axis; 
u2 and u3 lie in the plane of the 
ring cross  section. Rigid-body 
rotations W i  are referred to this 
same local coordinate system. 
These directions are shown in 
figure 2. 

Certain simplifying assump­
tions have been made in this analy­
sis: (1) The ring is considered to 
be a membrane in that the local 
bending stiffness of the shell wal ls  
is neglected, (2) the ring buckles 
without localized wrinkling of the 

Figure 1.- Ring-segment configuration and coordinate systems. 	 membrane walls, (3) any cross  sec­
tion of the ring remains rigid in its 

own plane so that the cross  section remains circular and the resulting deformations can 
be characterized by the six rigid-body motions of translation and rotation of the cross  
section, (4)the rigid-body rotations a r e  small enough for the displacements on the surface 
of the toroidal ring to  be represented by the vector sums of the displacements due to 
translations and rotations of a cross  section. 

Derivation of Governing Equations 

The buckling equations of the pressurized toroidal ring deforming about some pre­
s t ressed equilibrium configuration can be obtained from the variational equation 

where II1 is the change in strain energy, II2 is the potential-energy change of the 

internal pressure,  I13 is the potential energy of the prebuckling membrane s t r e s s  acting 
through the buckling strain, and W is the work done by the externally applied loads 
during buckling. 
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Local buckling displacements in te rms  of rigid-body motions of a cross  section,-~~ 

The local displacements u, v, and w of a circular toroidal ring can be expressed in 
t e rms  of the rigid-body motions U i  and w i  of a cross  section. These a r e  identical to  
those given in reference 4 for a circular cylindrical beam. They are 

v = - r w l +  u2 cos e - u3 s in  e + 3,122 - w32)sin e cos e (2b) 

Note that U i  and wi a r e  functions of a! only. 

~-Strain energy of the toroidal ring.- If it is assumed that the strain ee in the e 
direction is negligible, the strain energy II1 for the toroidal membrane ring becomes 

The s t ra in  displacement relations for a toroidal membrane a r e  (ref. 5), after some 
manipulation, 

u,, + v cos e + w sin 0 1 
‘VY,2e, = 

R + r sin 8 
+ 

2(R + r sin Q)2\ 

+ w7a2 + u2 - 2uw,, sin e - 2uvYacos B) (4) 

eae = u’Q-+ v9Q!- cos e 
r R + r s i n e  

where commas denote differentiation with respect to  the subscripts. Nonlinear te rms  

a r e  retained in e, in order to take into account the nonlinear stretching of the ring 
during buckling. However, for the theory considered here, it is adequate to include only 
the linear te rms  in the shear-strain displacement relation. 

These s t ra ins  can be expressed in t e rms  of the rigid-body rotations and translations 
of a cross  section of the ring by substituting equations (2) into equations (4)and (5). The 
results a r e  
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GJ 

1e, = 
R + r sin 8 

+ 
2(R + r s in  e)2 

- ~ 3 ~ 1 )+ 2 r  s in  6(01'~3' + ~ 3 ~ 2 '  - 2r cos e(u2' - u1)(01~+ w2) 

e 
= R + r sin e [ rwl '  - (R + r sin e)(w2 s in  e + w3 cos 

+ sin e(-u3') + cos e(u2' - ul) - r w 2  c o d e  + r sin e cos e(w3g  (6b) 

where primes denote differentiation with respect to a. If equations (6) a r e  substituted 
into equation (3) and the result is integrated over 8 ,  the variation of the strain energy 
111 becomes (retaining all te rms  up to order (r/R)2): 

- -(wlf + w 2 ) r 2  + u31)1H d a  
R2 R 

where 

I = nr3t J = zTr3t A = 27rrt 

It should be noted that the equations here a r e  applicable to an orthotropic material since 

ee was  assumed to be zero. Therefore, to define the stiffness characteristics of the 
ring, it was  only necessary to define the four effective stiffness quantities EA, EI, GA, 
and GJ. 
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Potential energy of the pressurizing gas.- The work done by the internal pressure is 
the product of the pressure and the change in enclosed volume due to deformation. The 

Segment of deformed 

centroidal axis 

Figure 2.- Geometry of deformation of centroidal axis of ring. 

internal pressure is assumed to remain 
constant during buckling. Since the cross  
section of the ring is assumed to remain 
circular and to move as a rigid body 
during deformation, the change in volume 
is 

AV = Js*A*ds* - 27rRx (8) 

where ds* is a differential length along 
the centroidal axis of the ring after buck­
ling (see fig. 2), A *  is the a rea  normal 
to the deformed centroidal axis, and-
A = m-2. 

The radial, tangential, and out-of-plane displacements of the centroidal axis of the 
ring in terms of the rigid-body displacements are u2, u1, and -u3, respectively. 

The length d s *  can be expressed in the fundamental form 

(ds32  = dx2 + dy2 + dz2 (9) 

where 

x = E sin(a! + p) 

y = E COS(@ + p) 

z = -u3 

and 

Substituting equations (10) and (11)into equation (9) gives 

( d s q 2  = + 2p' + ( p ' ) ~ ~ 2 d a ! 2  + ( d ~ 3 ) ~+ 

which can be written as 
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where 

Expanding equation (12) and retaining up to second-order te rms  in the displacements gives 

d s * = ( +  ul' + u2 + Lp12 + (UZ')~+ (1l3')~- ~ U I U ~ ~ Rd a  
2R2 

To obtain the area A* normal to the deformed centroidal axis, note that the cross-
sectional a rea  a is unchanged but is no longer perpendicular to the deformed axis at 

: 

ds* 

r X  


Figure 3.- Cross-sectional area A I 

before and after shear deformation 
y 2  of the ring. 

coordinates (E,a+p, -u3) because of the shear deforma­
tions of the ring. An illustration of this effect for only 
the shear deformation in the plane of the ring y2 is 
shown in figure 3. 

From figure 3, the area A* can be expressed 
in te rms  of the original a rea  x by the equation-
A* = A cos y2, or taking into account shear deformation 
both in the plane and perpendicular to the plane of the 
ring leads to 

A *  = K COS y2 COS y3 (16) 

If the shear strains y2 and y3 are small, 

With y2 and y3 known, equations (15) and (17) can be substituted into equation (8) to 
obtain the change in volume. 

An expressi0.n for y2 and y3 can be found in the following manner: The local 
shear-s t ress  resultant Nao can be expressed in te rms  of ring shear and moment result­
ants as 

where M i  is the twisting moment and V2 and' V3 are the shear forces in the plane 
of the ring cross  section. (See fig. 1.) The energy due to shear can be written as 
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Substituting equations (6b) and (18) into equation (19) and integrating over 
following result: 

8 yields the 

The coefficients of V2 and V3 a r e  the desired quantities y2 and y3, respectively. 
Hence 

Substituting equations (15) and (17) into ( 8 ) ,  using equations (21), and retaining up 
to quadratic t e rms  in the displacements gives the change in volume of the ring due to 
deformation as 

With II2 = -p AV, the variation in the potential energy resulting from internal pressure 
can be written as 

Additional potential energy of prebuckling -membrane stress.- In order to take into 
account buckling behavior, the change in potential energy of the prebuckling membrane 
s t resses  due to a uniform line load q, as they act through the nonlinear buckling displace­
ments, must be accounted for. The prebuckling membrane s t r e s s  is taken to be 

-qR(1 + C) + PA 
Iso = 

A 

This membrane s t r e s s  acts through the strain given by equation (sa). Hence the variation 
of this energy while it acts through the buckling displacements is given by 

2a 2a 
6rI3 = 6 lolo.Isoeart(R + r sin ejde d a  

10 




Substituting equation (Sa) into equation (25), integrating, and retaining te rms  up to order 
c2 results in 

Work done by the external loads.- The toroidal ring is loaded by a uniformly distrib­
uted radial line load q acting on the outer surface of the cross  section. (See fig. 4.)3
The load q is initially directed toward the center, but 
during buckling it is assumed to behave in  one of the fol­
lowing ways: (a) The load remains in the same direction 
(constant-direction loading), (b) the load remains directed 
toward the center of initial curvature (radial loading), and 
(c) the load remains normal to the deformed surface at 
every point (hydrostatic loading). 

To evaluate the work done by three loading conditions, 
it is necessary to express the local displacements of a 
point on the surface of the shell directly under the line load 

Ring cross section 

in te rms  of the rigid-body motions of the cross  section of - -

the ring. Since 8 = n/2 directly under the line load (see Figure 4.- Direction of external l ine 
load q.

fig. 4), the local displacements at the point of the load can 
be obtained from equations (2) as 

U Q = ~ / ~= u1 - "33 7
I 

(a) For the constant-direction loading't 75, p (see fig. 5) the variation in the external work 
is 

6Wa = -1 q ds* 6W& '/2 (28)
S* 

where ds* is an infinitesimal length of the 
outer surface of the ring directly under the 
external load q. This infinitesimal length-- x  ds*  is obtained from equations (9), (lo),  and 

Figure 5.- Geometry of constant-direction loading. (11)by using the displacements u, v, and w 
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f rom equations (27) in place of u1, -us, and u2, respectively. The result is (keeping 
up to  first-order t e rms  in displacements) 

~ 1 '- Rcw3' + 
R(l  + c) 

R(l + c)da (29) 

and the variation in  the external work becomes 

(b) For  radial loading (fig. 6) the variation in the external work is 

where ds* is given by equation (29) and A K  is the radial distance of a point on the 
outer surface of the deformed ring from the corre-

Y A  
9 

sponding point on the undeformed outer surface. 

Retaining up to quadratic te rms  in the displace­
4 ments gives 

u2A K =  E +  
2(R + r) + 

2(R + r)1e=?T/2 
(32) 

v2 

- X  Substituting this expression for A E  into equation (31) 

Figure-6.- Two-dimensional representation 
for geometry of radial loading. 

and making use of equations (27) and (29) leads to  the 
following equation for the external virtual work: 

(c) For the hydrostatic loading, the variation in the external work is 

6Wc = -q 6A52 (34) 

where A52 is the net area enclosed by the deformed and undeformed ring surface at its 
outer extremity. (See fig. 7. Here, the a r e a  enclosed by the undeformed ring surface at 
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u2 

its outer extremity is r(R + r)2.) For simplicity the out-of-plane contribution to this 
work te rm will not be considered, so that it is only necessary to  consider the two-
dimensional deformations shown in  figure 7. Hence, the resulting buckling loads for the 

hydrostatic loading will be applicable only for in-plane
' t  behavior. From figure 7 is seen that AS2 can be 

represented by the equation 

(35) 

where -
R = ( R + r ) l + ­[ R y  2(R + r)21

e = ~ / 2  
(36) 

and 
Figure 7.- Two-dimensional representations (37)for geometry of hydrostatic loading. Dis­

placements are  evaluated at 0 = n/2. 

Substitution of equations (36) and (37) into equation (35) results in  

AS2 = 1 ( R  + r)2J;r[p-(u'+ 2w) + 1 ("2 + w2 + u'w - da  (38)
2 (R + r)2 

After substitution of equation (38) into equation (34) and making use of equations (27), the 
variation in the work of the hydrostatic line load q is 

6Wc = -qR(1 + c)6 1 - c + c2 . . .(u12 + u22 
R2 

Buckling equations.- The buckling equations a r e  now obtained by substituting equa­
tions (7),(23), (26), (30), (33), and (39) into equation (l),taking the indicated variation, 
and integrating by parts where necessary. Equating the coefficients of the arbitrary 
variations 6ul, 6112, 6w3, 6wl, 6 ~ 2 ,and 6u3 separately to zero yields 

-(T+ 1 ) ( ~ 1 "+ ~ 2 ' )+ (P + S ) ( R W ~+ ~1 - ~ 2 ' )- Rug'' - $1 + C)(ul - ~2') 
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R r  

+ (P + S)(Rw3' + ~ 1 '(T + l)(ul' + ~ 2 )  - ~ 2 " )+ Rug' - a(1+ c) (u~ '- ~ 2 " )  

+ cC(-Rw3 - ~1+ ~ 2 ' )= 0 

w2'-R(w2' - 01) - R r  (w1" + --y)- qcRw1 - qc(-u3 + Rwi) - qcRw1 = 0 
2 2 R ­

-R(w2" - wl ' )  + (P + S + + Rw2) + Rr(? - 5)= 02R 

+ R w ~ ' )+ -(,I" + ~ 2 ' )+ c(1+ C ) U ~ ' '  + q ( ~ 3+ Rcwl) = 0 
2 

where 

q = -
E1 2EI 

PAR2 T = -EAR2 r = JG-	 qR3 s=-A G R ~  p = -
E1 E1 E1 

The single-underlined te rms  in equations (40) apply for a constant-direction load (case a), 
the double-underlined te rms  for a radial load (case b), and the triple-underlined te rms  for 
a hydrostatic load (case c). Note that the in-plane buckling behavior is not coupled with 
out-of-plane buckling. The first three equations, (40a), (40b), and ( ~ O C ) ,describe in-plane 
buckling in te rms  of the in-plane variables u1, u2, and w3. The second three equations, 
(40d), (40e), and (4of), describe out-of-plane buckling in te rms  of the variables u3, w1,  
and w2. 

Solutions of the Buckling Equations 

A solution to equations (40) may be taken in the form 

u1 = iil sin na! 

u2 = E2 cos na! 

-
w3 = w3 sinna! 

-w1 = w1 sin na! 
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-
w2 = w2 cos na (42e) 

u3 = ii3 sin na (42f) 

where n represents the number of buckle waves and Tii and Gi are constants. 

In-plane buckling.- The solution for the in-plane buckling for each of the three 
loading conditions cited previously is obtained by substituting equations (42a), (42b), and 
(42c) into equations (40a), (40b), and (40c). This results in a matrix equation of the fol­
lowing form: 

where 

+ T)n2 + P + S n(T + S + 1)+ nP 

+ S + 1) + nP T + 1+ n2(P + S) 

P + S + n 2  n(P + S)+ n 

and where h] takes one of the following forms: 

-n(l + c) 

CQ], = g /  -nc -n2(1 + c) + 1 

L O 0 

r-. -n(l + c) 

PIb= q - n c  -n2(1 + c) + 1 

L- 0 

r-. -nc 

[Q] = S I-nc -n2(1 + c) + 1 
C 

I-" -nc 

R(P + S) + 

(444 

0 

(444  

(44e) 
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- -  

The critical load for each of the three loading conditions is obtained by setting the 
determinant 

/ H + ~ ? J = o  (45) 

A first-order approximation to these critical loads can be obtained by expanding the 
determinant and keeping only the t e rms  which are linear in  and c. (The results of 
this procedure were found to  give answers within 5 percent of those obtained from the 
exact solution for c 5 0.1). The lowest buckling mode is for n = 2 so that the result of 
this expansion is : 

For constant-direction loading: 

- 4­-
2qcr  -

I + - c +  4(1 + c) +-1 + 2c 
3 S + P  T 

For  radial loading: 

- - 4.5 
3qcr -

1 + - c +  4 + 4.5c (47) 

2 S + P  

For  hydrostatic loading: 

- - 3 
qcr -

1+-	4 + 3c 
S + P  

Out-of-plane buckling.- The out-of-plane buckling solutions for the two loading con-.­

ditions a r e  obtained by substituting equations (42d), (42e), and (42f) into equations (40d), 
(40e), and (40f). This results in equations of the form 

where 

rRn2 
2 

8
[d = 
n k  + P - E) R(n2 + S + P + a) 

Rn(5 + 1) 
r n 2  R(rn2 + 1 
2 
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and where [$ takes on one of the following forms: 

Setting 

leads to the buckling loads. 

A s  before, a first-order approximation to these critical loads can be obtained by 
expanding the determinant and keeping only the terms which are linear in and c. 
Also, the lowest buckling mode is for n = 2 so that the result of this expansion is 

For constant-direction loading: 

For radial loading: 

1.51­12 f ­- P + S  
qcr - 4 + 4c + 'f.4"+ + r ( 0 . 5  + 0 . 5 ~ )  

(53) 
P + S  P + S  
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Note that in equations (46), (47), (48), (52), and (53), the internal-pressure parameter P 
and shear-stiffness parameter S always appear in combination (P + S) so that the shear 
stiffness is augmented by the internal pressure contribution. Thus P + S can be con­
sidered as an effective transverse shear stiffness. 

DISCUSSION OF RESULTS 

The results of this analysis can be compared with results obtained by other investi­
gators if the shear and extensional stiffnesses are assumed to  be infinitely large and the 
radius ratio c is neglected. For these cases equations (46), (47), (48), (52), and (53) 
become , respectively : 

-

(Icr= 4 

(In-plane buckling, constant-direction loading) (544  


qcr = 4.5 (In-plane buckling, radial loading) (54b) 

-

qcr = 3 (In-plane buckling, hydrostatic loading) (544 


- - 9 qcr 4 - k -1 (Out-of-plane buckling, constant-direction loading) (54d) 

r 
-
qcr = -12 (Out-of-plane buckling, radial loading) 

4-F-1 
r 

Equation (54a) agrees with results given by Ratzersdorfer (ref. 1)and equations (54d) 
and (54e) agree with Timoshenko (ref. 3). Equations (54b) and (54c) agree with results 
given by Boresi (ref. 2). Boresi also included the effect of ring thickness, which will be 
discussed later. 

The effects of finite shear stiffness with appropriate contribution of internal pres­
sure  and radius ratio c on the buckling load can be seen by referring to figures 8 and 9. 
The results shown in these figures were obtained from the approximate equations (46), 
(47), (48), (52), and (53). However, they a r e  quite accurate for  the ranges of ring param­
e ters  (cy 1/T, I?, 1/(S + P)) considered here. 

In figure 8 the in-plane buckling load parameter Qcr (obtained from eqs. (46), (47), 
and (48)) is plotted against the shear-stiffness parameter 1/(S + P) for c = 0 and 0.1 

with the extensional stiffness parameter 1/T equal to zero. It can be seen that the cri t­
ical load is influenced significantly by changes in the direction of loading during deforma­
tion. It is also seen that the critical load is influenced by c and that this influence is 
likewise dependent on the direction of loading. For example, as c increases 5 is 
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0 .M .as .12 .16 .20 . 24 .28 

I /(S+P) 

Figure 8.- Variation of in-plane cr i t ical  load parameter wi th  effective shear-
stiffness parameter. 

decreased. The influence of ring depth on the buckling load parameter shows the same 
trends that were obtained by Boresi (ref. 2) for the radial and hydrostatic loading condi­
tions of a ring of rectangular c ross  section. However, there appears to be no literature 
available for the constant-direction loading with the effects of ring depth included. Cal­
culations were also carried out for finite but realistic values of 1/T in the range 
0 5 1 5  0.01 for the constant-direction loading case (eq. (46)). Throughout this range, the

T
values of qcr changed so slightly that the differences could not be plotted in figure 8. 
Thus, ring extension has little influence on in-plane buckling in the n = 2 mode. This 
would not be the case, however, if external constraints forced buckling in a higher mode. 

Note that in all cases,  the critical load parameter markedly decreases with an 
increase in  the shear stiffness parameter 1/S + P. Furthermore, since the pressure 
parameter P always appears with the shear parameter, the internal pressure will  have 
no effect if the shear stiffness of the membrane wall  is large (S = m). 

In figure 9, the out-of-plane buckling load parameter acr (obtained from eqs. (52) 
and (53)) is plotted against shear stiffness parameter 1/S + P for c = 0 and 0.1 with 
twisting stiffness I' = 1.0. It can be seen that, as in the in-plane buckling case, the 
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c = o  
.8 I- c = .  I 


. 4  t 
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Figure 9.- Variation of out-of-plane cr i t ical  load parameter w i th  effective 
shear-stiffness parimeter fo r  r = 1. 

direction of loading during deformation, as well as the value of c, significantly affects 
the magnitude of the buckling load. In all cases the buckling load parameter decreases 
with an increase in 1/S t- P. Also, the out-of-plane buckling loads a re  lower than the 
in-plane buckling loads for the same external loading conditions and geometrical proper­
t ies.  Note in equations (54d) and (54e) the potentially large effect of the parameter r on 
out-of-plane buckling. Evidently, if r = 1, drastic reductions in the buckling load occur. 
Such low values may be possible fo r  deployable toroidal rings constructed from single 
layers of organic o r  metallic fabric (see, for example, ref. 6). 

It is interesting to  note that the in-plane and out-of-plane buckling modes a re  uncou­
pled. This is true because the product of inertia for the toroidal ring is zero. A conse­
qence of this uncoupling is that the twisting stiffness I' does not affect in-plane buckling 
and the extensional stiffness T does not influence out-of-plane buckling. 

CONCLUDING REMARKS 

A theoretical investigation of the buckling of a pressurized toroidal ring under a 
uniformly distributed line load has been carried out, with finite shear stiffness, 
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extensional stiffness, and the appropriate contributions from the internal pressure taken 
into account. The equations governing both in-plane and out-of -plane buckling behavior 
of the ring for three directions of loading have been derived and solved, and simple buck­
ling formulas a r e  given. 

The major results of the investigation are:  

1. The magnitude of the buckling load is very sensitive to the direction of loading 
during the buckling deformations, and also to the ratio of cross-sectional radius to 
radius of the ring. 

2. Out-of-plane buckling loads a re  lower than the in-plane buckling loads for the 
same external loading conditions. 

3. Shear stiffness of the ring wall material and internal pressure both contribute to 
the effective transverse shear stiffness of the ring, which strongly influences buckling 
strength. 

4. The effect of extensional stiffness on the in-plane buckling load is negligible. 
However, twisting may strongly influence the buckling loads. Out-of -plane buckling 
behavior does not couple with in-plane buckling behavior. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., March 3, 1967, 
124-08-06- 21-23. 
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